Second-order Elliptic and Parabolic Equations with B(r, V Mo) Coefficients

نویسنده

  • HONGJIE DONG
چکیده

The solvability in Sobolev spaces W 1,2 p is proved for nondivergence form second order parabolic equations for p > 2 close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, and almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the W 2 p -solvability for the same p of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when p = 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Linear Elliptic and Parabolic Equations with Growing Drift in Sobolev Spaces without Weights

We consider uniformly elliptic and parabolic second-order equations with bounded zeroth-order and bounded VMO leading coefficients and possibly growing first-order coefficients. We look for solutions which are summable to the p-th power with respect to the usual Lebesgue measure along with their first and second-order derivatives with respect to the spatial variable.

متن کامل

Carleman Inequalities and the Heat Operator

1. Introduction. The unique continuation property is best understood for second-order elliptic operators. The classic paper by Carleman [8] established the strong unique continuation theorem for second-order elliptic operators that need not have analytic coefficients. The powerful technique he used, the so-called " Carleman weighted inequality, " has played a central role in later developments....

متن کامل

Rate of Convergence of Finite-difference Approximations for Degenerate Linear Parabolic Equations with C and C Coefficients

We consider degenerate parabolic and elliptic equations of second order with C1 and C2 coefficients. Error bounds for certain types of finitedifference schemes are obtained.

متن کامل

Cordes conditions and some alternatives for parabolic equations and discontinuous diffusion ∗

We consider parabolic equations in nondivergent form with discontinuous coefficients at higher derivatives. Their investigation is most complicated because, in general, in the case of discontinuous coefficients, the uniqueness of a solution for nonlinear parabolic or elliptic equations can fail, and there is no a priory estimate for partial derivatives of a solution. There are some conditions t...

متن کامل

Gaussian Estimates for Fundamental Solutions of Second Order Parabolic Systems with Time-independent Coefficients

Abstract. Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients on Rn. In particular, in the case when n = 2 they obtained Gaussian upper bound estimates for the heat kernel without imposing further assumption on the coefficients. We study the fundamental solutions of the systems of second o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008